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Growth of Clusters in a First-Order Phase Transition 
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The results of computer simulations of phase separation kinetics in a binary 
alloy quenched from a high temperature are analyzed in detail, using the 
ideas of Lifshitz and Slyozov. The alloy was modeled by a three-dimensional 
Ising model with Kawasaki dynamics. The temperature after quenching 
was 0.59Tc, where Tc is the critical temperature, and the concentration of 
minority atoms was p = 0.075, which is about five times their largest 
possible single-phase equilibrium concentration at that temperature. The 
time interval covered by our analysis goes from about 1000 to 6000 
attempted interchanges per site. The size distribution of small clusters of 
minority atoms is fitted approximately by cl ~ ( 1 -  p)Sw(t), cz 
(1 -- p)4Qzw(t)~ (2 _< l _< t0); where c~ is the concentration of clusters of 
size l; Q2,..., Qx0 are known constants, the "cluster partition functions"; 
t is the time; and w(t) = 0.015(I + 7.17t-113). The distribution of large 
clusters (l > 20) is fitted approximately by the type of distribution proposed 
by Lifshitz and Slyozov, cz( t )= -(d/dl)g~[lnt + ~(l/t)l, where ~o is a 
function given by those authors and 4J is defined by ~(x) = Coe - = -  
Cle -~ja - C2e-SXla; Co, C1, C2 are constants determined by considering 
how the total number of particles in large clusters changes with time. 

KEY W O R D S  : Nucleation ; cluster growth ; phase separation. 

1. I N T R O D U C T I O N  

T h e  bas ic  fea tures  o f  t he  phase  seg rega t ion  p rocess  in a b i n a r y  a l loy  such  as 

Zn -A1 ,  f o l l o w i n g  q u e n c h i n g  in to  t he  misc ib i l i ty  gap ,  can  be  s imu la t ed  o n  a 
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computer for a simple model of such a system. In this model, which has been 
described extensively elsewhere, (1-9),6 each site of  a (simple cubic) lattice is 
occupied by either an A or B particle. Particles on nearest neighbor sites 
interact in a way which favors segregation. As is well known, this alloy model 
is isomorphic to a lattice gas with nearest neighbor attractive forces in which 
the phase segregation is into a liquid and a vapor phase. (This is accomplished 
by identifying sites occupied by B particles with empty sites and A particles 
with particles of  the lattice gas.) 

The microscopic kinetics of  this system is represented (z) by Kawasaki 
dynamics, a Markov process whose basic step, in lattice-gas language, is to 
move one particle to a neighboring empty site. More specifically, at each step 
of the simulation a site is chosen at random, then a neighboring site is chosen 
at random, and then if the two sites are occupied by different kinds of particle 
(or in lattice-gas language, if one is occupied and the other empty), their 
occupation numbers are interchanged with a probability, chosen to satisfy 
detailed balancing, 

p(AE) = e-~E/2krF(AE) (1) 

Here AE is the increase of  energy brought about by the proposed inter- 
change and F is an even function, which in this work was taken to be 
[2 cosh(AE/2kT)] -~. The number of  times that this process is attempted, 
divided by the total number of sites, is taken as our measure of the time. 

The phase diagram of  this system is accurately known from series 
expansions: The critical temperature To is very close to 1.13 V/k, where V is 
the amount of energy required to separate two A particles on adjacent lattice 
sites and k is Boltzmann's constant. (~~ 

In a recent paper (9~ we discussed a series of simulations made at T = 
0.59Tc [i.e., (V/kT)= 1.5 exactly] for various small values of  p, the 
fraction of  sites occupied by A particles (corresponding, in the lattice-gas 
interpretation, to the fraction of  occupied sites). The smallest value of  p was 
0.0146, the value in the saturated B-rich phase (corresponding to saturated 
vapor). The other values used for p were 0.02, 0.035, 0.05, 0.06, 0.075, and 
0. I. The initial state was chosen to be random, corresponding to quenching 
from an infinite temperature. 7 The lattice was simple cubic with 50 x 50 x 50 
sites (or in a few cases 30 x 30 x 30 sites) and periodic boundary conditions. 

The analysis in Ref. 9 dealt with equilibrium and quasiequilibrium 
properties, particularly the distribution of cluster sizes, and revealed the 
probable existence of metastable states at densities p below about 0.035. In 

6 For early simulation work of this type see Ref. 2. 
7 In a few cases the system was first brought to equilibrium at the saturation temperature 

for the density p and then quenched to the lower temperature. Except for the behavior 
at very early times, the results appeared to be the same. 
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the present paper we analyze a single, very long run at density p = 0.075, 
but the qualitative behavior is similar for densities 0.05, 0.06, and 0.l. The 
behavior of the structure function, energy, and some gross cluster properties 
at high densities, p = 0.2 and 0.5, is described in Refs. 4-8, and at the lower 
densities in Ref. 11. 

2. QUALITATIVE BEHAVIOR 

The time evolution of the system following quenching can be broken up 
into three stages. In the first stage, which lasts for about ten time units (that is, 
ten attempted interchanges per site) the distribution of  clusters changes 
rapidly, away from its initial form in which nearly all the particles are in 
monomers (one-particle clusters), toward one with fewer monomers and 
many more large clusters of  sizes from two upward. 

During the second stage, which lasts from about the 10th to the 100th 
time unit, the number of large clusters (larger than about 30 particles) con- 
tinues to grow, but the distribution of  small clusters has stabilized to some 
extent; in fact this distribution can be fitted quite well, for l ~< 10, by the 
empirical formula obtained in Ref. 9: 

cl = (1 -p )3w ,  e l = ( 1  - p)~Qzw ~ (2 ~< l) (2) 

where cz (l = 1, 2,...) denotes the number of/-particle clusters per lattice site, 
w is an adjustable parameter, whose value changes with time as the cluster 
distribution changes, and Qz is the partition function for/-part icle clusters, 
defined in Ref. 12 as 

Qz = ~ '  e -~E(K) (3) 
K 

In this formula the sum contains one representative from each translational 
equivalence class of/-particle clusters, and E denotes the energy of the cluster 
K, which is equal to - V times the number of adjacent pairs of  occupied sites 
in it. 

By about 125 time units the number of  large clusters has ceased to grow. 
This signals the beginning of the third stage, in which the number of large 
clusters no longer grows, but decreases slowly. Most of  the' clusters that 
remain are growing in size, however, and as a result the total number of  
particles in large clusters increases slowly despite the decreasing number of  
such clusters. At the same time the value of  w in formula (2) falls slowly 
because the number of particles in small clusters is decreasing. Even by the 
end of our longest run, however, which was at 6467 time units, the value of w 
and the number of particles in small clusters are well above the values they 
would be expected to take at equilibrium, and there are still about 20 large 
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clusters present with sizes ranging from 25 to 750, in place of  the single large 
cluster of  size about 7500 that one would expect to find at equilibrium. 

Table I compares the observed cluster concentrations c~ with those 
calculated from the empirical formula (2). In each pair of  rows the observed 
values are given in the upper row and the calculated values in the lower row. 
Each value given for the time t is the average of 20 successive times at which 
"observat ions" of  the cluster distribution (i.e., the values of  the cz) were 
made and recorded by the computer. From each set of  20 cluster distributions 
an average distribution cl, c2 .... was calculated and is recorded in the upper 
row of a pair. The values of cl, ca .... shown in the lower row were calculated 
from the empirical formula (2) with w chosen to make the observed and 
calculated values of ~21 lcz equal. A comparison of  the upper and lower row 
in each pair shows that the values ofcz for 1 ~< l ~< 10 are given quite well by 
formula (2) with w depending on the time. The finding that these values of cz 
depend on time only through w confirms the ideas discussed qualitatively in 
Ref. 9 and is in agreement with a suggestion by Binder: see Eq. (3.8) of 
Ref. 13. 

A mathematical description of the behavior we observed has been given 
by Lifshitz and Slyozov/1~ The physical basis of  their theory rests on the 
fact that the vapor pressure over a curved surface exceeds that over a plane 
surface by an amount proportional to 1/R, where R is the radius of  curvature. 
Extrapolating this idea to values of  R as small as the radius of a cluster and 
taking the clusters to be roughly spherical, one assumes that the "vapor  
pressure" of a cluster of  size l exceeds the saturated vapor pressure by an 
amount proportional to l -l/a, and hence that near a cluster of  size l the 
steady-state value of  w exceeds its value ws for the saturated vapor by an 
amount proportional to 1-1~3. If  the actual value of  w exceeds the vapor 
pressure of some cluster, that cluster is likely to grow; but if w is less than the 
vapor pressure of  the cluster, it is likely to shrink. 

At the beginning of the second stage of the process described above, the 
value of w is larger than the vapor pressure of  most of  the large clusters 
(which have been formed by fluctuations) and so most of them grow. This 
increases the number of particles in large clusters and so reduces the number 
in small clusters and hence reduces the value of w. Eventually w becomes less 
than the vapor pressure of  some of  the smaller of  the " l a rge"  clusters. These 
will then tend to shrink instead of growing further. The lowered value of w 
also makes it difficult for any new large clusters to form by fluctuations. In 
fact, from this time on, the number of large clusters will tend to decrease: the 
third stage of the process has begun. 

During this third stage w tends to adjust itself to a value such that the 
growth of large clusters just balances the shrinking of  small clusters; for, if w 
is too large, then most of the large clusters will grow, so that the number of  
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particles in large clusters increases, the number in small clusters decreases, 
and so w decreases; and if w is too small, then most of the large clusters will 
shrink, transferring particles from large to small clusters and increasing w. 
Thus the only changes in w are henceforth comparatively slow ones, brought 
about by slow changes in the distribution of large clusters. One of the most 
important processes changing this distribution is the steady disappearance of 
the smallest "large clusters" from it as they eventually become too small to 
qualify as large clusters any  more. This process tends to increase the average 
size of the remaining large clusters, and so to reduce the value to which w 
adjusts itself. In consequence the value of w decreases slowly, and so does 
the total number of particles in small clusters. 

The basic processes in this mechanism are the condensation of a smalI 
cluster, typically a monomer, onto a large cluster, and its inverse, the evapora- 
tion of a small cluster from a large cluster. The rate at which these processes 
change the sizes of the large clusters depends on the diffusion of small 
clusters. (14~ Other processes, however, can also change the size of a large 
cluster, and should in principle be included in the discussion. Typical of such 
processes are the coagulation of two large clusters to form an even larger one, 
and its inverse, the breaking up of a large cluster into two large parts. Rough 
estimates indicate that processes involving more than one large cluster are 
relatively unimportant at sufficiently large times. 

One reason for this, stated simply, is that Dz, the diffusion constant of a 
large cluster of size l, will decrease for large l, e.g., Dz "-~ l -y (7, ,-, I in two 
dimensions, <6> 7' ~ 2/3 in three dimensions(l~>). The relative effects of small 
and large clusters on the transport of matter by diffusion will be in proportion 
to the diffusion constant multiplied by the number of particles in such clusters. 
As time proceeds, the number of particles in small clusters decreases only 
very slowly, and the number in large clusters increases correspondingly; their 
ratio multiplied by the number l -~ measuring the ratio of their diffusion 
constants gets smaller and smaller, and so for large enough times we may 
expect to be able to ignore transport by diffusion of large clusters. 

Even if their centers of gravity do not move, two large clusters can 
coagulate if their growth brings their surfaces into contact. If  c large clusters 
per site start growing at random positions, a cluster that reaches the size l 
will, on the average, have absorbed lc other large clusters on the way (all the 
ones whose points of origin are now within it). Even the largest of these 
absorbed clusters cannot have been larger than �89 at the moment of  absorp- 
tion, and their average size at the moment of absorption may be estimated as 
half of this, which is �88 Therefore the number of particles in the/-particle 
cluster that were obtained by absorption of  other large clusters is rougMy 
�88 cl. The ratio of this to the current size of the cluster is about �88 which is �88 
of the number of particles per site in large clusters and is therefore less than 
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2~o in the run made at 7�89 density. As a first approximation, therefore, we 
may neglect the growing together of  large clusters, as well as their diffusion 
motion, in comparison with the mechanism based on interactions between 
large clusters and small ones. 

Although we have not taken interactions between large clusters into 
account in our analysis, these interactions did have a noticeable effect, 
particularly on the very large clusters. For  example (see Table VIII in 
Appendix B) at time 1981 the largest cluster contained 285 particles, but on 
the next observation, at time 1997, the largest cluster contained 441 particles, 
having apparently been formed through the coagulation of two clusters each 
containing about 220 particles. Effects of this kind are discussed by Lifshitz 
and Slyozov (14~ as a correction to their theory, and by Binder and co-workers 
as an integral part of  the kinetic description. (16-18) They may be expected to 
increase in importance as the density increases, (1-8~ because at higher densities 
there are more particles in large clusters. 

3. Q U A N T I T A T I V E  B E H A V I O R :  K I N E T I C  E Q U A T I O N S  

A number of  different systems of kinetic equations have been used for 
the discussion of  the type of problem we are considering. The best established 
are the equations of Becker and D6ring, in which the only processes considered 
are the absorption and the emission of a monomer by a cluster of arbitrary 
size. The equations for cz, the mean density of  clusters of size l, are in Refs. 19 
and 20, 

d c z / d t  = J z - 1  - Jz ( l  >1 2) (4) 

where J~, the net rate of conversion (per unit volume or per site) of/-particle 
to (l + 1)-particle clusters, is given by 

Jl  = a l c zc l  - -  b~+ic~+l  ( l  >i 1) (5) 

Here az is a coefficient describing the rate at which/-particle clusters absorb 
monomers and bt+l is a coefficient describing the rate at which (l + 1)- 
particle clusters emit monomers. To complete the system of equations we 
also need one for cz. The condition determining c~ is the conservation of 
matter, which can be written 

~ lcz = p = const (6) 
l= : l .  

The coefficients in the formula (5) for J~ are related through the fact that, 
by detailed balancing arguments, Jz = 0 at equilibrium. If  the density is small 
enough for the equilibrium state to have only one phase, it is reasonable to 
assume that the equilibrium cluster concentrations c, are given approximately 
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by (2) for  all l. Substituting f rom (2) into (5) and setting Jz = 0, we obtain  for  
the ratio b~ + ~/az a formula  which depends on the density only weakly, through 
the factor  (I - e)3: 

b, + ~/a, = [c,c~lc~ +l leq  = W~(1  - -  p ) 3  

where 

The factor  (1 

(l >/ 2) (7) 

w~ = Q~/Qz+I (8) 

_ p)3 represents the reduct ion in the probabi l i ty  of  evapora t ion  
o f  a m o n o m e r  f rom an (l + 1)-particle cluster caused by the possibility tha t  a 
m o n o m e r  cannot  (by definition) fo rm on any site next to a site that  is already 
occupied. We shall assume that  (7) is valid also at higher densities, for which 
the equil ibrium state has two phases, a l though (2) is clearly not  valid here for  
large l either in the true equil ibrium state or even in the quasis ta t ionary state 
with a t ime-dependent  w. 

Fo r  l ~< 9, the exact values o f  wz are available. (12,2~) They  are shown in 
Table  I I  for  T = 0.59Tc. The  last row o f  the table gives values o f  the 
empirical  fo rmula  

where 

w~ ~ w~[1 + 2 . 4 1 5 / ( / -  2) 1;3] (# i> 3) (9) 

ws = 0.010526 = lira w~ (10) 
l ~ c o  

is the value of  w for  the saturated vapor ,  whose value we know f rom previous 
work.  (9~ The physical  basis for  the approkimate  formula  (9) is the idea 
ment ioned earlier that  the " v a p o r  p ressu re"  over  a droplet  o f  size l exceeds 
that  over  a plane surface by an amoun t  p ropor t iona l  to the curvature  o f  the 
surface o f  the droplet.  Equat ion  (9) provides a convenient  way o f  extrapolat-  

Table II. Exact Values of w= Compared w i th  the Approx imat ion  (9) at 
T = 0.059Tc 

1 1 2 3 4 5 

w~ 0.0744 0.0446 0.0347 0.0307 0.0282 
Approximation - -  - -  0.0359 0.0307 0.0282 

l 6 7 8 9 

wz 0.0266 0.0254 0.0245 0.0238 
Approximation 0.0265 0.0254 0.0245 0.0238 
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ing w~ to values of  I greater than 9. In the earlier stages of  this work, a different 
approximation, of  the form 

wz ~ ws exp [cons t / ( I -  const) l/a] 

suggested by one of the extrapolation formulas for Q~ discussed in Ref. 9, was 
used, but this approximation formula is less accurate for 3 ~< l ~< 9 and is 
analytically less convenient than (9). It is, of  course, quite possible that the 
above formula, or some other formula, is much more accurate than (9) for 
the values of  l where we need it, which are between 40 and 200, but we have 
found no evidence of this. 

When it comes to the individual coefficients az and b~ + 1, as opposed to 
their ratio, our information is less sure, since exact information about  them is 
available only for l ~< 5. It can be argued, however, (1~,22~ (see also Appendix 
A) that for large l we have roughly 

az ~ 47rDRl (11) 

where D is the diffusion coefficient for monomers and Rz is the radius of  an 
/-particle cluster (assumed spherical). I f  we accept the suggestion of Eq. (9) 
that the radius of  curvature of  such a cluster is proportional to (l - 2) l/a, 
then we shall have 

a~ = ~ ( I -  2) t/a (12) 

where c~ is a constant. A value for c~ can be estimated by using the Einstein 
relation for the diffusion constant and by taking Rz to be the radius of  a 
sphere of  volume l - 2. The Einstein relation gives 

D = Ax2/(6At) = 1/12 (13) 

since for At = 1 our choice for the function F in Eq. (l) makes (Ax 2) = 
F(0) = 1/2. The estimated value for c~ is therefore 

c~ = 4rr(1/12)(3/47r) 1/3 = 0.65 (14) 

These approximations can now be used to help simplify the Becker- 
D6ring equations. We first use (7) and the first equation of (2) to bring the 
Becker-D6ring equations to the form 

J~ = v,c~ (15) 
where 

v~ = az(1 - p)a(w - wlel+l/q) (16) 

Next, we use the approximations (9) and (12) for wz and at to express vz in 
the form L\/(/l-2\l/a wz(  c z + l ~ ! l - - 2 ) ~ / a \  

Vz = A ~ I ~ - Z - -  ~1 - 1 + - -  1 -  (17) 
ws q ] 2.415 ) 
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where l* is defined by 

and A by 

w = ws[1 + 2.415/(l* - 2) 1~3] (18) 

A = 2.415(1 - p)Saws ,~ 0.013 (19) 

The variable l* is our approximation to the size of a "cri t ical"  cluster over 
which the "vapor  pressure" is equal to its actual instantaneous value w; 
that is, it is the size of a cluster that is as likely to grow as to shrink when the 
value of the "vapor  pressure" is w. The value 0.013 for A is not reliable: in 
deriving it we used the extrapolation formula (9), we assumed, unrealistically, 
that clusters are spherical, and we used the Becker-D6ring assumption that 
clusters of size 2 or greater never meet one another. A derivation that 
eliminates this second assumption, and gives a larger numerical value for A, 
is outlined in Appendix A. 

Finally, as an approximation for the third-stage evolution of large 
clusters, we assume that, for large l, the scale of variation of c/is l*, so that 
1 - c~+l/c~ has the order of  magnitude !/l*. If  we assume further that l* 
itself is large, then we may approximate the formula (17) for v /by 

v~ ,~ A[(I/ l*) 1/3 - 1] (large l) (20) 

a formula due to Lifshitz and Slyozov. (14) 
In the same spirit, we may also approximate (4), for large/, by the partial 

differential equation 

Oc(l,t) O [ ( l ) ~ / ~  ] 
-~  = - A -Sl  -~ - 1 c (  l ,  t ) (21) 

where l* depends on w through the condition (9), and c(l, t) is a smooth 
function of two continuous variables, so chosen that c(l, t) = e~(t) when l is 
an integer. 

By itself Eq. (21) is not enough to determine c(l, t) from a given initial 
distribution of clusters because it does not tell us how w and therefore l* 
varies with time. To close the system of  equations we use, as before, the 
particle conservation condition (6). Under the approximations we have been 
using, this condition takes the form 

pz(w) + c(l, t) l  dl = p = const (22) 

where pL(w) is defined by 

L 

oL(w) = (1 - p)~w + (1 - p)~ ~ tw'Q, (23) 
/ = 2  
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and L is the point at which we choose to draw the line between " s m a l l "  and 
" l a r g e "  clusters. The value of  L should satisfy the inequalities 

1 << L < l* (24) 

since L must be >> 1 to justify the approximations leading to (21) and (22) and 
must be < l* because the quasiequilibrium approximation (2) does not apply 
to clusters larger than l* : the minimum it predicts in ct at l = l* is not in fact 
found. 

Equations (20)-(21) are identical to the ones used by Lifshitz and Slyozov 
(LS). They treat 1 as a continuous variable from the beginning and do not 
distinguish between w and the density of  the vapor. Equation (22) then 
corresponds to their simpler relation 

fo w + c(l, t ) l  dl = p 

The relation between w and l* in the LS theory, with w - w~ proportional  to 
(l*)-l/a instead of (l* - 2) 1/a, is also simpler than ours, but to relative order 
1/l* it makes no difference. We believe that these differences between the LS 
equations and ours will not significantly affect the qualitative behavior of  the 
solutions of  these equations for large l. In later sections we discuss these 
solutions and compare them with our simulations. 

4. S O L V I N G  T H E  K I N E T I C  E Q U A T I O N S  

It is argued by Lifshitz and Slyozov ~14> that the kinetic equations for the 
large clusters, Eqs. (21) and (22), imply that l* will increase linearly with time 
for large t. Table l i t  shows a test of  this prediction. Each value of  t in this 
table is the average of 20 successive times at which "observa t ions"  of  the 
cluster distribution (i.e., the values of  the cz) were made and recorded by the 
computer. Some of these values of  t also appear  in Table I. For each value of 

Table Ill. Test of the Lifshitz-Slyozov Prediction that  the Critical Cluster Size 
I*  Increases Linearly wi th Time 

t 900 1189 1494 1796 2 1 2 1  2454 2798 3137 

w/w~ 1.718 1 .670 1 .628 1 .600 1.591 1 .567  1.527 1.513 
l* 40.1 48.9 59 67.3 70.1 79.3 98.3 106.1 
0.0384t 23 46 57 69 81 94 107 120 

t 3500 3870 4250 4640 5034 5431 5669 

w/w~ 1.479 1 . 4 6 4  1 . 4 3 6  1.426 1.401 1.407 1.410 
1" 130.4 1 4 3 . 0  1 7 1 . 9  1 8 4 . 2  2 2 0 . 8  2 1 1 . 7  205.9 
0.0384t 134 149 163 178 193 209 218 
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t shown, a value of w was calculated by the method described in connection 
with Table I. These values of w were used to calculate the values of  w/ws 
recorded in the second row of Table III. The values of l* given in the third 
row were then calculated using Eq. (18), and finally the coefficient of  t in the 
last row was calculated to give the least-squares best fit to the values of l*. 
Comparison of  the last two rows shows that the formula 

l* ~ 0.0384t (25) 

gives l* with an accuracy of about 15~o. This accuracy is not spectacular, but 
nevertheless is only about 3~o of the total variation of l* itself, and so con- 
firms Lifshitz and Slyozov's prediction as a good first approximation to the 
truth. 

To develop the consequences of Eq. (25), let us write, more generally, 

l* = K t  (26) 

The equation obtained by making this substitution in (21) can be solved 
using the method of characteristics after the further substitution 

g(l, t)  = c(A, t )  dA (27) 

This new equation can be written 

where 

8g(l, t) [ (~)1,3 ] Sg(l, t) 
-g/ + B -A ~7 = 0  

B = A K  -1/3 

The characteristics of Eq. (28) are the solutions of  

dl /d t  = B ( l / t )  v8 - A 

that is~ 

where 

In t + c~(1/t) = const 

f d x  
d?(x) = x -  B x  1/a + A 

The general solution of (28) is therefore 

gq, t) = r t + r 

where ~b is an arbitrary function. 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 
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To use (33) (which is also due to Lifshitz and Slyozov) we write it in the 
form 

ln t = ~b-l(g) - q~(x) (34) 

where 

x = l / t  (35) 
and ~b- 1 is the inverse of the function ~b. That is to say, the theory predicts 
that In t is the sum of a function of g(/, t), which we interpret as the number 
of  clusters per lattice site larger than I at time t, plus a function of lit. We 
obtained numerical information from the simulations about the functions ~b 
and q; by tabulating In t as a function of the observed values of x and g. This 
is shown in Table IV. The columns are labeled by values of  Ng rather than g, 
where N = 125,000 is the number of  lattice sites, so that Ng(l, t) is the number 
of clusters larger than l at time t. A sample of the data used in calculating 
Table IV is given in Appendix B. 

In the main body of  Table IV, each column corresponds to a value for 
Ng(l, t), which is the number of clusters larger than l at time t, an d  each row 
corresponds to a value for x = l/t. The entries in the table were calculated in 
two stages from the data given in Appendix B (Table IX). First Ng, 
which is tabulated against l for various values of t in Table IX, was re- 
tabulated for those same values of t but at intervals of 0.01 in x, using linear 
interpolation. In the second stage, this new table was treated as a table of t 
against Ng and x, and retabulated using intervals of 5 in Ng using linear 
interpolation again. The logarithms of these interpolated values of t are the 
ones in Table IV. 

If (34) is correct, then neighboring rows (columns) should differ by an 
amount which is the same in each column (row). The differences are shown in 
parentheses between the main entries. The table does approximately satisfy 
this condition, except in the rows for x /> 0.1, i.e., 1 1> 0.10t ~ 2.6l*. 

The Aq~ column was calculated by averaging the entries in the relevant 
rows of differences; for example, the first entry 0.21 in this column is the 
average of the numbers 0.19, 0.21, 0.23 and 0.22. The 4, column was then 
calculated by summing, after fixing 4(0.01) arbitrarily as 0.19, for example, 
0.40 = 0.19 + 0.21, 0.61 = 0.40 + 0.21, etc. The ~b -1 row at the foot of  the 
table was obtained by calculating the values of In t + (~(l/t) for the column 
of the main table above it and choosing an average or representative value. 
The A~b-i row shows the first differences of the ~b-1 row. In most cases the 
differences of  neighboring entries in successive columns of the main table are 
close to the values given for A~b-1. 

All the tabulated values of In t, except for the five entries in the last three 
rows, satisfy Eq. (34) with an error not exceeding 0.05: that is, Eq. (34) gives 
t with an accuracy of 5~ provided x ~< 0.09. Thus the table confirms the LS 
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prediction (34) about the functional form of g(l, t). The method of analysis 
leading to this table, and from it to the functions r and r is independent of 
the extrapolation formula (9); it requires only that l* be proportional to the 
time. 

To carry this test of the Lifshitz-Slyozov theory further, we would like 
to have approximate formulas for the functions r and r having some basis in 
theory. We start with the function r since, according to Eq. (32), two 
parameters A and B are sufficient to fix this function completely. Since (32) 
implies that the derivative r of the function r satisfies 

[1/r - x = A - O x  l j 3  (36) 

we can find values for A and B by plotting [1/r - x against x 1/3 and 
fitting a straight line. Using the values x = 0.015, 0.025 .... and estimating the 
corresponding values of r from the finite differences Ar given in Table IV, 
we found the least-squares best fit to be given by 

A = 0.1525, B = 0.4530 (37) 

When combined with (29) this gives K = 0.0382, so that (26) becomes 
l* = 0.0382t. This agrees very well with the value 0.0384 given in (25), which 
was obtained by an independent method, and so provides some confirmation 
of the ideas underlying our method of analysis. On the other hand, the above 
value for A is over ten times as big as the first-principles estimate given in 
(19). Some reasons for mistrusting that estimate were mentioned just after 
(19). Our results also deviate at this point from a prediction of Lifshitz and 
Slyozov, that the function 1/r must have a double zero. The condition for 
a double zero is A / K  = 27/4 = 6.75, whereas we find A / K  = 3.99, which 
implies that the expression (36) for 1/r has no zeros at all for positive 
values of x. A brief discussionof the value of A/K,  that is, B3/A 2, is given at 
the end of this paper. 

Although the values of A and B given in (35) gave the best fit to the values 
of [1/r - x, it turned out that the values of  r itself, obtained in 
Table III, could be fitted better by taking A = 0.154 instead of 0.1525. This 
value for A, with B = 0.453 as before, implies K = 0.0393, still remarkably 
close to the value 0.0384 given in (25). Table V shows a comparison of the 
values of  r from Table IV with those implied for formula (36) with 
A = 0.154, B = 0.453, and a constant of integration chosen to give the best 
agreement [the value of this constant of integration is such that r = 0.09]. 

To obtain an analytical formula for the function ~b, we use the identity 
(22), which, when combined with (27), gives 

) f: [ ~g(l, t) ld i  = Lg(L,  t) + g(/, t) d/ (38) p - p~(w) = \ -  ~! 
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Table V. Values of  ~b(x) f rom Table IV Compared w i th  the 
Formula (36) 

II 

x 0.01 0.02 0.03 0.04 0.05 0.06 

r 0.19 0.40 0.61 0.87 1.07 1.34 
Formula 0.20 0.37 0.59 0.83 1.10 1.37 

x 0.07 0.08 0.09 0.I0 0.11 0.12 

q~(x) 1.62 1.91 2.23 2.39 2.57 2.79 
Formula 1.64 1.90 2.15 2.39 2.61 2.82 
m i l l  

From this and our formula (33), which we are supposing to give g(l, t) when 
l/> L, it follows that 

~o ~ r t r dl + 

?L 
= p -  p L ( w ) - j  ( r  r 1 6 2 1 6 2  (39) 

c3 

Assuming that the functions r and r have bounded first derivatives, the 
integral on the right side of  (39) has an upper bound of the form const/t. 
The expression p -  pz(w), on the other hand, approaches the constant 
p - pz(w~) for large t. Lifshitz and Slyozov argue from this that the integral 
on the left is approximately independent of  t, and hence that ~b(x) is approxi- 
mately proportional to e -x. At the times considered in our simulations, 
however, this approximation is not a go6d one; the reason is that even at the 
end of  our run w and pL(w) were still far from their asymptotic values. For  a 
very large system these asymptotic values would be ws = 0.0105 and 
pL(w~) = 0.0118, whereas the values at the end of  our run were ws = 0.0148 
and pL(w~) = 0.0213. It  is true that the asymptotic values of  w and pL(w) are 
somewhat larger for our system because it is of  finite size--we estimate the 
asymptotic values to be w = 0.012 and pL(w) = 0.015--but the simulation 
was still far from these values when it ended. 

To obtain a better approximation for r we use the formulas (18) and (25), 
which imply 

w ~ w~(1 + 7.17/t 1/3) (40) 

To obtain from this a formula for pL(w) as a function of  t, we fitted a quad- 
ratic polynomial to the function pL(w) for the relevant range of  values of  w, 
which we took to be w~ ~< w ~< 1.7ws, since w was approximately 1.7ws at the 
earliest time considered in these calculations. We tried this method both for 
L = 10 and for L = 20. The results were more convincing for L = 20, since 
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Table VI. Values of P20(w) from Eq. (2) Compared with the Quadratic 
Approximation (41)r 

w/w~ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 

125,00002o(W) 1480 1715 1984 2295 2669 3134 3745 4605 
Quadratic 1480 1668 1936 2284 2713 3221 3810 4478 

The values of p2o in this table were calculated from (2), using (8) and (9) to get 
011 ..... Q2o. 

the empir ica l  d i s t r ibu t ion  fo rmula  (2) predic ts  a nonnegl igible  number  o f  
clusters o f  sizes between 11 and 20 at the  h igher  values o f  w considered.  The  
quadra t ic  a p p r o x i m a t i o n  used for  L -- 20 was 

125,000p20(w) ~ 1480 + 481y + 423y 2 (41) 

where y = (40/13)[(w/w,) - 1]. Table  VI shows tha t  the  accuracy o f  this 
a p p r o x i m a t i o n  is roughly  3~ 

W h e n  (40) is subs t i tu ted  into (41) we ob ta in  

125,000[p - p2o(W)] ~ 7895 - 10,612t - ~ a  - 205,879t -2/3 

Subst i tut ing this into (39) and neglect ing the in tegral  on  the r ight ,  we ob ta in  

~(x) = Coe - ~ -  Cze - ~ x t 3 -  C2e -Sxla (42) 

where  

NCo = 7895 e -~(~) dx 

2 NC1 = 10,612 e -4e(x)1a dx (43) 

/fo NC2 = 205,879 e -5~)13 dx 

with N = 125,000. 
A p p r o x i m a t e  values o f  the integrals  were ob ta ined  f rom the values o f  

given in Table  IV, using S impson ' s  rule for  0 <~ x ~< 0.12 and  a l inear  
ex t rapo la t ion  o f  the  funct ion ~ to es t imate  the con t r ibu t ion  o f  values o f  x 
exceeding 0.12. These values,  subst i tu ted into (43), gave 

NCo = 7895/0.0449 = 1.76 x 105 

NC1 = 10,612/0.0341 = 3.11 x 105 (44) 

NC2 = 205,879]0.0276 = 7.46 x 106 
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Table VII. Values of N~b(x) from Table IV Compared w i th  the Formula (42) 
i 

x 7.54 7.65 7.76 7.91 8.09 8.32 

N~b(x): from (42) 54.1 50.6 47.1 42.4 37.1 31.1 
from Table IV 55 50 45 40 35 30 

x 8.61 9.04 9.51 9.92 10.31 

N~b(x): from (42) 24.5 16.9 11.1 7.6 5.3 
from Table IV 25 20 15 10 5 

Table VII shows the values of ~b(x) calculated from (42) with these coefficients, 
compared with the "observed" values taken from Table IV. (The symbol x 
has different meanings in the two tables.) 

5. CONCLUSIONS A N D  DISCUSSION 

The main conclusions to be drawn from these computer simulations and 
our analysis of them are these: 

1. Over the time range considered (which started fairly late in the 
process, when there had already been about 1000 attempted interchanges per 
site) the distribution of small clusters is given approximately by the empirical 
formula (2), with a value of w that changes slowly with time. 

2. The time dependence of w can be approximately represented by the 
formula 

w ,,~ w~[1 + 2.4/(l*) 1/8] (45) 

where w~ = 0.0105 is the value of w describing the saturated vapor, and l* 
is given by 

l* ~ 0.038t (46) 

with t the time, measured by the number of attempted interchanges per site. 
The fact that l* is proportional to t accords with the predictions of Lifshitz 
and Slyozov. (14) 

3. The distribution of large clusters is described by a formula of the type 
implied by the theory of Lifshitz and Slyozov (1~) 

where 

f dx 
~(x)= x -  Bx l13 + A (48) 
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and the function ~ can be determined by considering the total number of  
particles in large clusters. 

4. It is a consequence of (47) that the average size of  the large clusters, 
which is roughly 1", grows in proportion to t. Various investigators, including 
some of  the present authors, (2a~,a have reported average cluster sizes growing 
more slowly than this (e.g., as tsCs). The reason for the discrepancy may be 
that the times considered were too early, or the concentrations too high, for 
the LS theory to apply; or that the averages included some small clusters as 
well as the large ones. 

5. The function ~b is fitted quite well by the formula 

~b(x) = Co e - x -  Cle7 ~ x l a -  C2e -~x/a (49) 

with Co, Cz, C2 determined by considering how w, and hence the number of 
particles in large clusters, changes with time. In the very late stages of  the 
process, to which the Lifshitz-Slyozov theory applies, only the term Coe - x  is 
necessary, but for the times considered in our simulations the other terms 
are necessary, too. 

6. For the normalization integral associated with the formula (49) 
to converge, it is necessary that Ba/A 2 >1 6.74, as noted by Lifshitz and 
Slyozov. ( ~  The observed value of  Ba/A 2 was 4.0. This seems to indicate that 
our results cannot be extrapolated to arbitrarily large values of In t + ~(I/t). 
Possibly the value of B eventually gets larger, than the value 0.453 which we 
found. This would imply, by (29), a smaller value of K = (A/B)  a, that is, a 
smaller rate of  increase of l*, than during the time interval covered by our 
simulations. To be consistent with the condition Ba/A 2 >>. 6.75, this "ulti-  
mate"  value of K would have to be not greater than A/6.75 = 0.0226, 
instead of the value 0.038 implied by our data. 

A P P E N D I X  A .  C L U S T E R  G R O W T H  B Y  D I F F U S I O N  

In the body of this paper we used a formula (11) relating the rate at 
which particles arrive at the surface of an/-particle cluster to the diffusion 
coefficient for monomers. In the derivation of that equation (1~,22~ it is 
assumed that almost all the small clusters are monomers, For the densities 
we are considering here, a sizeable fraction of the small clusters are not 
monomers, and so an improvement on formula (11) and its consequence, 
Eq. (19), is desirable. To provide this we consider the process of diffusion 
near a cluster of size l without making any specific assumptions about the 
other clusters. Consider two neighboring lattice sites, say site 1 and site 2, 
in a nonuniform system for which the probability of  site i being occupied (by 

8 See Ref. 8 for other references. 
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an A particle, in alloy language) is p~. The probability of  the event that site 1 
is occupied and site 2 empty (occupied by a B particle, in alloy language) is 
pl(1 - p2) + 0(03), and the conditional probability, given this event, that the 
particle (A particle) moves from site 1 to site 2 is (in an approximation which 
becomes exact as p --> 0) ~F(0) per unit time, where Fis  defined in Eq. (1) and 
was put equal to 1/2 in our simulation. The probability that the (A) particle 
will jump from site 1 to site 2 is therefore approximately ~F(0)pl(1 - p2) per 
unit time. Similarly the probability of a jump from site 2 to site 1 is 
~F(O)p2(l  - pz). Subtracting, we find that the mean rate of flow from site 1 
to site 2 is 

~F(0)[pl(1 - P2) - p2(1 - Pi)] = @s -- P2) 

It follows that the density of  (A) particles satisfies a lattice version of  the 
diffusion equation with diffusion constant D = 1/12. 

The quantity v~ defined in Eq. (15) is the average net number of particles 
per second arriving at the surface of an/-particle cluster, which we take to be 
a sphere of radius Rz. On the assumption that diffusion controls the rate of 
arrival and absorption of  these particles, the density p(r)  at distance r from 
the center of the cluster is related to the radial diffusion current I ( r )  by 

I ( r )  = - D ap(r ) /dr  (ALl) 

where D is the diffusion constant. Assuming a steady state (vt = const) the 
conservation of particles requires 

4Trr2I(r) = const = vz (A2) 

Using this in (A1), with the boundary condition p(r)  --~ p as r --> or, we find 

p(r)  = p - ( vJ4rrDr)  

The boundary condition at r = Rz then gives 

vd4rrDRz = p - p(wl) = (wl* - w ) d p / d w  + ... 

where we are assuming that it is possible to associate a density p(w) with each 
value of  w. Substituting from (9) for wz, (13) for D, and from the assumed 
relation l -  2 = (4,r /3)R,  3, as in the text, for R,, we obtain Eq. (20), but 
with A now given by 

A = 4rr ~ 2.415 ~-~ 

The main difference between this formula and the formula (19) for A given 
in the text is the factor dp/dw,  which allows for the contribution of  clusters 
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containing more than one particle to the supply of particles to the cluster of 
size l. The numerical value of dp/dw depends on what function we assume for 
p(w). A reasonable choice, based on the assumption that (2) is valid for all 
l <~ l*(w), would be 

l* 

p(w) = (1 - p)3w + (1 - p)4~ lQ,w z 
2 

but for simplicity we truncated the series at l = 20 instead of l = l*. Our 
procedure gives a value of dp/dw which decreases from about 3 to 1.5 as the 
run considered in this paper proceeds. This extra factor in the theoretical 
formula for A brings up the value of A from 0.013 [as obtained in Eq. (19)] 
to a value in the range 0.02-0.04. Unfortunately, the observed value of A 
given in Eq. (37) is still considerably larger. 

A P P E N D I X  B. S O M E  O F  T H E  D A T A  

Table VIII shows a sample of the data used in the investigation. In each 
row of the table the left-hand entry is a time and the other numbers are the 
sizes of the 25 largest clustegs at that time. The numbers in the 20 rows 
between the two horizontal rules are among those used in calculating the 
averaged values of Ng(l, t) for t = 2121, which were then combined with 
averaged values of Ng(l, t) for the other times in Table III to give the entries 
in Table IV. 

Table VIII illustrates how the size of the largest cluster can be affected by 
coagulation of other large clusters. The largest cluster at time 1980.6 has size 
285, but by time 2013.5 this cluster (now of size 278) is only second largest; 
the new largest cluster, of  size 441, appears to have been formed by the 
coagulation of two of  the five clusters whose sizes at time 1980.6 were 
between 214 and 228. A similar event can be seen between times 1786.7 and 
1802.6, but this one is quickly undone again. 

Table IX shows the values of Ng(l, t) used in compiling Table IV. The 
numbers at the heads of the columns are time t. Of  the remaining numbers, 
those on the right-hand side of each column are equally spaced values of  l; 
those on the left are the corresponding values of  Ng(l, t), the number of  
clusters larger than l, averaged over 20 times whose average is t. 
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