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Growth of Clusters 1n a First-Order Phase Transition
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The results of computer simulations of phase separation kinetics in a binary
alloy quenched from a high temperature are analyzed in detalil, using the
ideas of Lifshitz and Slyozov. The alloy was modeled by a three-dimensional
Ising model with Kawasaki dynamics. The temperature after quenching
was 0.59T,, where T, is the critical temperature, and the concentration of
minority atoms was p = 0.075, which is about five times their largest
possible single-phase equilibrium concentration at that temperature. The
time interval covered by our analysis goes from about 1000 to 6000
attempted interchanges per site. The size distribution of small clusters of
minority atoms is fitted approximately by ¢, & (1 — pP*w(t), o1 R
(I — YOty (2 < ! < 10); where ¢, is the concentration of clusters of
size I; Qs,..., 010 are known constants, the ““cluster partition functions”;
¢ is the time; and w(¢) = 0.015(1 + 7.17¢/%), The distribution of large
clusters (/ > 20) is fitted approximately by the type of distribution proposed
by Lifshitz and Slyozov, ¢,(t) = —(d/dD¢lln t + @({/t)], where ¢ is a
function given by those authors and ¢ is defined by ¥(x) = Coe % —
Cie~ %13 — Coe~5%8: C,, C., C, are constants determined by considering
how the total number of particles in large clusters changes with time.

KEY WORDS : Nucleation; cluster growth; phase separation.

1. INTRODUCTION

The basic features of the phase segregation process in a binary alloy such as
Zn-Al, following quenching into the miscibility gap, can be simulated on a
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computer for a simple model of such a system. In this model, which has been
described extensively elsewhere,t-2-8 each site of a (simple cubic) lattice is
occupied by either an A or B particle. Particles on nearest neighbor sites
interact in a way which favors segregation. As is well known, this alloy model
is isomorphic to a lattice gas with nearest neighbor attractive forces in which
the phase segregation is into a liquid and a vapor phase. (This is accomplished
by identifying sites occupied by B particles with empty sites and A particles
with particles of the lattice gas.)

The microscopic kinetics of this system is represented® by Kawasaki
dynamics, a Markov process whose basic step, in lattice-gas language, is to
move one particle to a neighboring empty site. More specifically, at each step
of the simulation a site is chosen at random, then a neighboring site is chosen
at random, and then if the two sites are occupied by different kinds of particle
(or in lattice-gas language, if one is occupied and the other empty), their
occupation numbers are interchanged with a probability, chosen to satisfy
detailed balancing,

P(AE) = e *53TF(AE) (1)

Here AE is the increase of energy brought about by the proposed inter-
change and F is an even function, which in this work was taken to be
[2 cosh(AE/2kT)]~ 1. The number of times that this process is attempted,
divided by the total number of sites, is taken as our measure of the time.

The phase diagram of this system is accurately known from series
expansions. The critical temperature T is very close to 1.13V /k, where V is
the amount of energy required to separate two A particles on adjacent lattice
sites and k is Boltzmann’s constant.®*9

In a recent paper® we discussed a series of simulations made at T =
0.597T, [i.e., (V]kT) = 1.5 exactly] for various small values of p, the
fraction of sites occupied by A particles (corresponding, in the lattice-gas
interpretation, to the fraction of occupied sites). The smallest value of p was
0.0146, the value in the saturated B-rich phase (corresponding to saturated
vapor). The other values used for p were 0.02, 0.035, 0.05, 0.06, 0.075, and
0.1. The initial state was chosen to be random, corresponding to quenching
from an infinite temperature.” The lattice was simple cubic with 50 x 50 x 50
sites (or in a few cases 30 x 30 x 30 sites) and periodic boundary conditions.

The analysis in Ref. 9 dealt with equilibrium and quasiequilibrium
properties, particularly the distribution of cluster sizes, and revealed the
probable existence of metastable states at densities p below about 0.035. In

8 For early simulation work of this type see Ref. 2.

7 In a few cases the system was first brought to equilibrium at the saturation temperature
for the density p and then quenched to the lower temperature. Except for the behavior
at very early times, the results appeared to be the same.
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the present paper we analyze a single, very long run at density p = 0.075,
but the qualitative behavior is similar for densities 0.05, 0.06, and 0.1. The
behavior of the structure function, energy, and some gross cluster properties
at high densities, p = 0.2 and 0.5, is described in Refs. 4-8, and at the lower
densities in Ref. 11.

2. QUALITATIVE BEHAVIOR

The time evolution of the system following quenching can be broken up
into three stages. In the first stage, which lasts for about ten time units (that is,
ten attempted interchanges per site) the distribution of clusters changes
rapidly, away from its initial form in which nearly all the particles are in
monomers (one-particle clusters), toward one with fewer monomers and
many more large clusters of sizes from two upward.

During the second stage, which lasts from about the 10th to the 100th
time unit, the number of large clusters (larger than about 30 particles) con-
tinues to grow, but the distribution of small clusters has stabilized to some
extent; in fact this distribution can be fitted quite well, for / < 10, by the
empirical formula obtained in Ref. 9:

a=>0=pw, a=0-p0w 2<) @

where ¢; (I = 1, 2,...) denotes the number of /-particle clusters per lattice site,
w is an adjustable parameter, whose value changes with time as the cluster
distribution changes, and @, is the partition function for /-particle clusters,
defined in Ref. 12 as

0, = Z' e~ BEE) 3)

K

In this formula the sum contains one representative from each translational
equivalence class of /-particle clusters, and E denotes the energy of the cluster
K, which is equal to — ¥ times the number of adjacent pairs of occupied sites
in it.

By about 125 time units the number of large clusters has ceased to grow.
This signals the beginning of the third stage, in which the number of large
clusters no longer grows, but decreases slowly. Most of the'clusters that
remain are growing in size, however, and as a result the total number of
particles in large clusters increases slowly despite the decreasing number of
such clusters. At the same time the value of w in formula (2) falls slowly
because the number of particles in small clusters is decreasing. Even by the
end of our longest run, however, which was at 6467 time units, the value of w
and the number of particles in small clusters are well above the values they
would be expected to take at equilibrium, and there are still about 20 large
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clusters present with sizes ranging from 25 to 750, in place of the single large
cluster of size about 7500 that one would expect to find at equilibrium.

Table I compares the observed cluster concentrations ¢; with those
calculated from the empirical formula (2). In each pair of rows the observed
values are given in the upper row and the calculated values in the lower row.
Each value given for the time 7 is the average of 20 successive times at which
“observations” of the cluster distribution (i.e., the values of the ¢,) were
made and recorded by the computer. From each set of 20 cluster distributions
an average distribution ¢y, ¢5,... was calculated and is recorded in the upper
row of a pair. The values of ¢;, ¢,,... shown in the lower row were calculated
from the empirical formula (2) with w chosen to make the observed and
calculated values of 312, /e, equal. A comparison of the upper and lower row
in each pair shows that the values of ¢; for 1 < I < 10 are given quite well by
formula (2) with w depending on the time. The finding that these values of ¢,
depend on time only through w confirms the ideas discussed qualitatively in
Ref. 9 and is in agreement with a suggestion by Binder: see Eq. (3.8) of
Ref. 13.

A mathematical description of the behavior we observed has been given
by Lifshitz and Slyozov.®® The physical basis of their theory rests on the
fact that the vapor pressure over a curved surface exceeds that over a plane
surface by an amount proportional to 1/R, where R is the radius of curvature.
Extrapolating this idea to values of R as small as the radius of a cluster and
taking the clusters to be roughly spherical, one assumes that the “vapor
pressure”” of a cluster of size / exceeds the saturated vapor pressure by an
amount proportional to /~V® and hence that near a cluster of size / the
steady-state value of w exceeds its value w, for the saturated vapor by an
amount proportional to /13 If the actual value of w exceeds the vapor
pressure of some cluster, that cluster is likely to grow; but if w is less than the
vapor pressure of the cluster, it is likely to shrink.

At the beginning of the second stage of the process described above, the
value of w is larger than the vapor pressure of most of the large clusters
(which have been formed by fluctuations) and so most of them grow. This
increases the number of particles in large clusters and so reduces the number
in small clusters and hence reduces the value of w. Eventually w becomes less
than the vapor pressure of some of the smaller of the ‘““large”” clusters. These
will then tend to shrink instead of growing further. The lowered value of w
also makes it difficult for any new large clusters to form by fluctuations. In
fact, from this time on, the number of large clusters will tend to decrease: the
third stage of the process has begun.

During this third stage w tends to adjust itself to a value such that the
growth of large clusters just balances the shrinking of small clusters; for, if w
is tooc large, then most of the large clusters will grow, so that the number of
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particles in large clusters increases, the number in small clusters decreases,
and so w decreases; and if w is too small, then most of the large clusters will
shrink, transferring particles from large to small clusters and increasing w.
Thus the only changes in w are henceforth comparatively slow ones, brought
about by slow changes in the distribution of large clusters. One of the most
important processes changing this distribution is the steady disappearance of
the smallest ““large clusters” from it as they eventually become too small to
qualify as large clusters any more. This process tends to increase the average
size of the remaining large clusters, and so to reduce the value to which w
adjusts itself. In consequence the value of w decreases slowly, and so does
the total number of particles in small clusters.

The basic processes in this mechanism are the condensation of a small
cluster, typically a monomer, onto a large cluster, and its inverse, the evapora-
tion of a small cluster from a large cluster. The rate at which these processes
change the sizes of the large clusters depends on the diffusion of small
clusters.®® Other processes, however, can also change the size of a large
cluster, and should in principle be included in the discussion. Typical of such
processes are the coagulation of two large clusters to form an even larger one,
and its inverse, the breaking up of a large cluster into two large parts. Rough
estimates indicate that processes involving more than one large cluster are
relatively unimportant at sufficiently large times.

One reason for this, stated simply, is that D,, the diffusion constant of a
large cluster of size /, will decrease for large /, e.g., D, ~ {77 (y ~ 1 in two
dimensions,”® y ~ 2/3 in three dimensions®®), The relative effects of small
and large clusters on the transport of matter by diffusion will be in proportion
to the diffusion constant multiplied by the number of particles in such clusters.
As time proceeds, the number of particles in small clusters decreases only
very slowly, and the number in large clusters increases correspondingly; their
ratio multiplied by the number /- measuring the ratio of their diffusion
constants gets smaller and smaller, and so for large enough times we may
expect to be able to ignore transport by diffusion of large clusters.

Even if their centers of gravity do not move, two large clusters can
coagulate if their growth brings their surfaces into contact. If ¢ large clusters
per site start growing at random positions, a cluster that reaches the size /
will, on the average, have absorbed /c other large clusters on the way (all the
ones whose points of origin are now within it). Even the largest of these
absorbed clusters cannot have been larger than 4/ at the moment of absorp-
tion, and their average size at the moment of absorption may be estimated as
half of this, which is %/. Therefore the number of particles in the [particle
cluster that were obtained by absorption of other large clusters is roughly
1. cl. The ratio of this to the current size of the cluster is about Lel, which is 4
of the number of particles per site in large clusters and is therefore less than
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2%, in the run made at 71%, density. As a first approximation, therefore, we
may neglect the growing together of large clusters, as well as their diffusion
motion, in comparison with the mechanism based on interactions between
large clusters and small ones.

Although we have not taken interactions between large clusters into
account in our analysis, these interactions did have a noticeable effect,
particularly on the very large clusters. For example (see Table VII in
Appendix B) at time 1981 the largest cluster contained 285 particles, but on
the next observation, at time 1997, the largest cluster contained 441 particles,
having apparently been formed through the coagulation of two clusters each
containing about 220 particles. Effects of this kind are discussed by Lifshitz
and Slyozov?® as a correction to their theory, and by Binder and co-workers
as an integral part of the kinetic description.*%-1® They may be expected to
increase in importance as the density increases,*~® because at higher densities
there are more particles in large clusters.

3. QUANTITATIVE BEHAVIOR: KINETIC EQUATIONS

A number of different systems of kinetic equations have been used for
the discussion of the type of problem we are considering. The best established
are the equations of Becker and Doring, in which the only processes considered
are the absorption and the emission of a monomer by a cluster of arbitrary
size. The equations for ¢;, the mean density of clusters of size /, are in Refs. 19
and 20,

dcl/dt = Jl—l - Jl (l 2 2) (4)

where J;, the net rate of conversion (per unit volume or per site) of -particle
to (I + 1)-particle clusters, is given by

J = aicier — briiCiia =1 &)

Here ¢, is a coefficient describing the rate at which /-particle clusters absorb
monomers and b,.; is a coefficient describing the rate at which (7 + 1)-
particle clusters emit monomers. To complete the system of equations we
also need one for ¢,. The condition determining ¢, is the conservation of
matter, which can be written

Z lc; = p = const 6)
=1

The coefficients in the formula (5) for J; are related through the fact that,
by detailed balancing arguments, J; = 0 at equilibrium. If the density is small
enough for the equilibrium state to have only one phase, it is reasonable to
assume that the equilibrium cluster concentrations ¢, are given approximately
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by (2) for all I. Substituting from (2) into (5) and setting J, = 0, we obtain for
the ratio 4, ;/a, a formula which depends on the density only weakly, through
the factor {1 — p)3:

biiifa = [eeyferia]eq = Wil — p)® (=22 (N

where
wi = Q)0 t))

The factor (1 — p)® represents the reduction in the probability of evaporation
of a monomer from an (/ + 1)-particle cluster caused by the possibility that a
monomer cannot (by definition) form on any site next to a site that is already
occupied. We shall assume that (7) is valid also at higher densities, for which
the equilibrium state has two phases, although (2) is clearly not valid here for
large / either in the true equilibrium state or even in the quasistationary state
with a time-dependent w.

For I £ 9, the exact values of w, are available.“2-2 They are shown in
Table II for 7' = 0.597.. The last row of the table gives values of the
empirical formula

w; & will + 2.415/(1 — 2)*3] (=3 ®
where

w, = 0.010526 = llim W, (10)
is the value of w for the saturated vapor, whose value we know from previous
work.® The physical basis for the approximate formula (9) is the idea
mentioned earlier that the “vapor pressure” over a droplet of size / exceeds
that over a plane surface by an amount proportional to the curvature of the
surface of the droplet. Equation (9) provides a convenient way of extrapolat-

Table M. Exact Values of w; Compared with the Approximation (9) at

T = 0.0597,
! 1 2 3 4 5
wy 0.0744 0.0446 0.0347 0.0307 0.0282
Approximation — — 0.0359 0.0307 0.0282
1 6 7 8 9
w; 0.0266 0.0254 0.0245 0.0238

Approximation 0.0265 0.0254 0.0245 0.0238
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ing w; to values of / greater than 9. In the earlier stages of this work, a different
approximation, of the form

w, & w, exp[const/(/ — const)'/?]

suggested by one of the extrapolation formulas for Q, discussed in Ref. 9, was
used, but this approximation formula is less accurate for 3 < / < 9 and is
analytically less convenient than (9). It is, of course, quite possible that the
above formula, or some other formula, is much more accurate than (9) for
the values of / where we need it, which are between 40 and 200, but we have
found no evidence of this.

When it comes to the individual coefficients g, and b,, ,, as opposed to
their ratio, our information is less sure, since exact information about them is
available only for / < 5. It can be argued, however," %22 (see also Appendix
A) that for large / we have roughly

a, ~ 4nDR, (1)

where D is the diffusion coefficient for monomers and R, is the radius of an
{-particle cluster (assumed spherical). If we accept the suggestion of Eq. (9)
that the radius of curvature of such a cluster is proportional to (I — 2)/3,
then we shall have

a = all — 2)'3 (12)

where « is a constant. A value for « can be estimated by using the Einstein
relation for the diffusion constant and by taking R, to be the radius of a
sphere of volume / — 2. The Einstein relation gives

D = Ax2J(6A) = 1/12 (13)

since for At = 1 our choice for the function F in Eq. (1) makes {Ax?> =
F(0) = 1/2. The estimated value for « is therefore

o« = 4n(1/12)(3/4m)!® = 0.65 (14)

These approximations can now be used to help simplify the Becker—
Doéring equations. We first use (7) and the first equation of (2) to bring the
Becker-Déring equations to the form

Ji =g (15)

where
v = afl — p)’(w — wici41/c) (16)
Next, we use the approximations (9) and (12) for w; and @, to express v, in

the form
_ [—2\w Wi a1 (= 2)'8
b= A{(l* - 2) R (1 s ) 2415 an
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where [* is defined by

3
i

wil + 2.415/(1* — 2)13] (18)
and A4 by
A

2.415(1 — p)Paw, ~ 0.013 (19)

The variable /* is our approximation to the size of a ““critical’’ cluster over
which the “vapor pressure’’ is equal to its actual instantaneous value w;
that is, it is the size of a cluster that is as likely to grow as to shrink when the
value of the “vapor pressure” is w. The value 0.013 for A4 is not reliable: in
deriving it we used the extrapolation formula (9), we assumed, unrealistically,
that clusters are spherical, and we used the Becker-D&ring assumption that
clusters of size 2 or greater never meet one another. A derivation that
eliminates this second assumption, and gives a larger numerical value for 4,
is outlined in Appendix A.

Finally, as an approximation for the third-stage evolution of large
clusters, we assume that, for large /, the scale of variation of ¢, is I*, so that
I — ¢;,/c, has the order of magnitude !//*. If we assume further that /*
itself is large, then we may approximate the formula (17) for v, by

v, & A[IJIFHYE — 1] (large /) (20)

a formula due to Lifshitz and Slyozov.®#
In the same spirit, we may also approximate (4), for large /, by the partial
differential equation

L s

where /* depends on w through the condition (9), and ¢(/, f) is a smooth
function of two continuous variables, so chosen that ¢(/, 1) = ¢,(¢) when [ is
an integer.

By itself Eq. (21) is not enough to determine ¢(/, t) from a given initial
distribution of clusters because it does not tell us how w and therefore /*
varies with time. To close the system of equations we use, as before, the
particle conservation condition (6). Under the approximations we have been
using, this condition takes the form

0

ou(W) + f o, )l dl = p = const 22)
L
where py(w) is defined by

prw) = (1 = p)*w + (1 — p)* ,Z wQ, (23)
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and L is the point at which we choose to draw the line between “small”’ and
“large” clusters. The value of L should satisfy the inequalities

l< L < [*¥ 24)

since L must be 1 to justify the approximations leading to (21) and (22) and
must be </* because the quasiequilibrium approximation (2) does not apply
to clusters larger than /*: the minimum it predicts in ¢; at / = /* is not in fact
found.

Equations (20)~(21) are identical to the ones used by Lifshitz and Slyozov
(LS). They treat / as a continuous variable from the beginning and do not
distinguish between w and the density of the vapor. Equation (22) then
corresponds to their simpler relation

W +f ol Dl dl = p
0

The relation between w and /* in the LS theory, with w — w, proportional to
(I*)~ 13 instead of (I* — 2)'3, is also simpler than ours, but to relative order
1/I* it makes no difference. We believe that these differences between the LS
equations and ours will not significantly affect the qualitative behavior of the
solutions of these equations for large /. In later sections we discuss these
solutions and compare them with our simulations.

4. SOLVING THE KINETIC EQUATIONS

It is argued by Lifshitz and Slyozov®#® that the kinetic equations for the
large clusters, Egs. (21) and (22), imply that /* will increase linearly with time
for large r. Table III shows a test of this prediction. Each value of ¢ in this
table is the average of 20 successive times at which “observations” of the
cluster distribution (i.e., the values of the ¢;) were made and recorded by the
computer. Some of these values of ¢ also appear in Table I. For each value of

Tabie lll. Test of the Lifshitz—-Slyozov Prediction that the Critical Cluster Size
I* Increases Linearly with Time

t 900 1189 1494 1796 2121 2454 2798 3137
wiws 1.718 1.670 1.628 1.600 1.591 1.567 1.527 1.513
I* 40.1 48.9 59 67.3 70.1 79.3 98.3 106.1
0.0384¢ 23 46 57 69 81 94 107 120

t 3500 3870 4250 4640 5034 5431 5669
wiw, 1.479 1.464 1.436 1.426 1.401 1.407 1.410
I* 130.4 143.0 1719 184.2 220.8 211.7 205.9

0.0384¢ 134 149 163 178 193 209 218
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¢ shown, a value of w was calculated by the method described in connection
with Table I. These values of w were used to calculate the values of w/w,
recorded in the second row of Table IIl. The values of /* given in the third
row were then calculated using Eq. (18), and finally the coefficient of ¢ in the
last row was calculated to give the least-squares best fit to the values of [*.
Comparison of the last two rows shows that the formula

1* =~ 0.0384¢ 25)

gives /* with an accuracy of about 15%,. This accuracy is not spectacular, but
nevertheless is only about 3%, of the total variation of /* itself, and so con-
firms Lifshitz and Slyozov’s prediction as a good first approximation to the
truth.

To develop the consequences of Eq. (25), let us write, more generally,

I* = Kt (26)

The equation obtained by making this substitution in (21) can be solved
using the method of characteristics after the further substitution

g, 1) = f ¢\, 1) dA @7
!
This new equation can be written
og(l, 1) I\ve og(h, 1) _
=5 T [B(;) - A] =5 = 0 (28)
where
B = AK™13 29)

The characteristics of Eq. (28) are the solutions of

dlldt = B([t)'® — 4 (30)
that is,
Int + ¢(Ijt) = const 3D
where
80) = [ (32
The general solution of (28) is therefore
g(, 1) = [lnt + $(I/1)] (33)

where i is an arbitrary function.
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To use (33) (which is also due to Lifshitz and Slyozov) we write it in the
form

Inz=¢7g) — $(x) (34

where
x =1t (35

and ¢t is the inverse of the function . That is to say, the theory predicts
that In ¢ is the sum of a function of g(/, ¢), which we interpret as the number
of clusters per lattice site larger than / at time ¢, plus a function of //z. We
obtained numerical information from the simulations about the functions ¥
and ¢ by tabulating In ¢ as a function of the observed values of x and g. This
is shown in Table IV. The columns are labeled by values of Ng rather than g,
where N = 125,000 is the number of lattice sites, so that Ng(/, ¢) is the number
of clusters larger than / at time ¢. A sample of the data used in calculating
Table IV is given in Appendix B.

In the main body of Table 1V, each column corresponds to a value for
Ng(l, 1), which is the number of clusters larger than / at time ¢, and each row
corresponds to a value for x = //t. The entries in the table were calculated in
two stages from the data given in Appendix B (Table IX). First Ng,
which is tabulated against / for various values of ¢ in Table IX, was re-
tabulated for those same values of ¢ but at intervals of 0.01 in x, using linear
interpolation. In the second stage, this new table was treated as a table of ¢
against Ng and x, and retabulated using intervals of 5 in Ng using linear
interpolation again. The logarithms of these interpolated values of ¢ are the
ones in Table IV,

If (34) is correct, then neighboring rows (columns) should differ by an
amount which is the same in each column (row). The differences are shown in
parentheses between the main entries. The table does approximately satisfy
this condition, except in the rows for x > 0.1, ie., / > 0.10¢ ~ 2.6/*.

The A¢ column was calculated by averaging the entries in the relevant
rows of differences; for example, the first entry 0.21 in this column is the
average of the numbers 0.19, 0.21, 0.23 and 0.22. The ¢ column was then
calculated by summing, after fixing ¢(0.01) arbitrarily as 0.19, for example,
0.40 = 0.19 + 0.21, 0.61 = 0.40 + 0.21, etc. The ! row at the foot of the
table was obtained by calculating the values of In ¢ + $(//¢) for the column
of the main table above it and choosing an average or representative value.
The A¢ ! row shows the first differences of the ¢~ row. In most cases the
differences of neighboring entries in successive columns of the main table are
close to the values given for Ag~1.

All the tabulated values of In #, except for the five entries in the last three
rows, satisfy Eq. (34) with an error not exceeding 0.05: that is, Eq. (34) gives
t with an accuracy of 5%, provided x < 0.09. Thus the table confirms the LS
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prediction (34) about the functional form of g(/, ). The method of analysis
leading to this table, and from it to the functions ¢ and ¢, is independent of
the extrapolation formula (9); it requires only that /* be proportional to the
time.

To carry this test of the Lifshitz—Slyozov theory further, we would like
to have approximate formulas for the functions ¢ and i having some basis in
theory. We start with the function ¢, since, according to Eq. (32), two
parameters A and B are sufficient to fix this function completely. Since (32)
implies that the derivative ¢’ of the function ¢ satisfies

/)] — x =4 — Bx'? (36)

we can find values for 4 and B by plotting [1/$'(x)] — x against x*'® and
fitting a straight line. Using the values x = 0.015, 0.025,... and estimating the
corresponding values of ¢'(x) from the finite differences A¢ given in Table IV,
we found the least-squares best fit to be given by

A = 0.1525, B = 0.4530 €1

When combined with (29) this gives K = 0.0382, so that (26) becomes
[* = 0.0382¢. This agrees very well with the value 0.0384 given in (25), which
was obtained by an independent method, and so provides some confirmation
of the ideas underlying our method of analysis. On the other hand, the above
value for A4 is over ten times as big as the first-principles estimate given in
(19). Some reasons for mistrusting that estimate were mentioned just after
(19). Our results also deviate at this point from a prediction of Lifshitz and
Slyozov, that the function 1/¢’(x) must have a double zero. The condition for
a double zero is A/K = 27/4 = 6.75, whereas we find 4/K = 3.99, which
implies that the expression (36) for 1/¢'(x) has no zeros at all for positive
values of x. A brief discussion-of the value of A/K, that is, B®/A2, is given at
the end of this paper.

Although the values of 4 and B given in (35) gave the best fit to the values
of [1/¢'(x)] — x, it turned out that the values of #(x) itself, obtained in
Table I1I, could be fitted better by taking 4 = 0.154 instead of 0.1525. This
value for 4, with B = 0.453 as before, implies X = 0.0393, still remarkably
close to the value 0.0384 given in (25). Table V shows a comparison of the
values of ¢(x) from Table IV with those implied for formula (36) with
A = 0.154, B = 0.453, and a constant of integration chosen to give the best
agreement [the value of this constant of integration is such that ¢(0) = 0.09].

To obtain an analytical formula for the function ¢, we use the identity
(22), which, when combined with (27), gives

b — pyw) = f (~9§(§’}—’)>le - Leg(L, 1) + fL “elnd  (38)
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Table V. Values of ¢(x) from Table [V Compared with the
Formula (36)

x 0.01 0.02 0.03 0.04 0.05 0.06
$(x) 0.19 0.40 0.61 0.87 1.07 1.34
Formula 0.20 0.37 0.59 0.83 1.10 1.37

x 0.07 0.08 0.09 0.10 0.11 0.12
$(x) 1.62 1.91 2.23 2.39 2.57 2.79
Formula 1.64 1.90 2.15 2.39 2.61 2.82

From this and our formula (33), which we are supposing to give g(/, ) when
! > L, it follows that

fwﬁmz+¢wguﬂ

=p - p(W) — Jo {blin ¢ + $(L()] — 4llnt + U/}l (39)

Assuming that the functions ¢ and ¢ have bounded first derivatives, the
integral on the right side of (39) has an upper bound of the form const/z.
The expression p — p,(w), on the other hand, approaches the constant
p — pr{ws) for large ¢. Lifshitz and Slyozov argue from this that the integral
on the left is approximately independent of #, and hence that (x) is approxi-
mately proportional to e™*. At the times considered in our simulations,
however, this approximation is not a godd one; the reason is that even at the
end of our run w and p (w) were still far from their asymptotic values. For a
very large system these asymptotic values would be w, = 0.0105 and
pr(w;) = 0.0118, whereas the values at the end of our run were w, = 0.0148
and py(w;) = 0.0213. It is true that the asymptotic values of w and p,(w) are
somewhat larger for our system because it is of finite size—we estimate the
asymptotic values to be w = 0.012 and p;(w) = 0.015—but the simulation
was still far from these values when it ended.

To obtain a better approximation for  we use the formulas (18) and (25),
which imply

wx wyl + 7.17/¢1/9) (40)

To obtain from this a formula for p;(w) as a function of ¢, we fitted a quad-
ratic polynomial to the function p,(w) for the relevant range of values of w,
which we took to be w, < w < 1.7w,, since w was approximately 1.7w, at the
carliest time considered in these calculations. We tried this method both for
L = 10 and for L = 20. The results were more convincing for L = 20, since
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Table V1. Values of gy(w) from Eq. (2) Compared with the Quadratic
Approximation (41)¢

wiwg 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

125,000p20(w) 1480 1715 1984 2295 2669 3134 3745 4605
Quadratic 1480 1668 1936 2284 2713 3221 3810 4478

¢The values of pae in this table were calculated from (2), using (8) and (9) to get

Oi1,..., O20.

the empirical distribution formula (2) predicts a nonnegligible number of
clqsters of sizes between 11 and 20 at the higher values of w considered. The
quadratic approximation used for L = 20 was

125,000p,4(w) & 1480 + 481y + 42332 (41)

where y = (40/13)[(wjw,) — 1]. Table VI shows that the accuracy of this
approximation is roughly 3%,.
When (40) is substituted into (41) we obtain

125,000[p — pgo(w)] =~ 7895 — 10,612t~ Y3 — 205,879¢ 2%
Substituting this into (39) and neglecting the integral on the right, we obtain
J(x) = Coe™* — Cie #*13 — (Cye 53 (42)
where

NC, = 7895/f e dx

0

NC, = 10,612 / f o= 16613 gy 43)

[}

NC, = 205,879 / f ¢=56013 gy
0

with N = 125,000.

Approximate values of the integrals were obtained from the values of ¢
given in Table IV, using Simpson’s rule for 0 < x < 0.12 and a linear
extrapolation of the function ¢ to estimate the contribution of values of x
exceeding 0.12. These values, substituted into (43), gave

NC, = 7895/0.0449 = 1.76 x 10°
NC, = 10,612/0.0341 = 3.11 x 10 (44)
NC, = 205,879/0.0276 = 7.46 x 10
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Table Vil. Values of N{s(x) from Table IV Compared with the Formula (42)

x 7.54 7.65 7.76 7.91 8.09 8.32
Ni(x): from (42) 54.1 50.6 47.1 42.4 37.1 311
from Table IV 55 50 45 40 35 30
x 8.61 9.04 9.51 9.92 10.31
Nf(x): from (42) 24.5 16.9 111 7.6 5.3
from Table IV 25 20 15 10 5

Table VII shows the values of #(x) calculated from (42) with these coefficients,
compared with the “observed” values taken from Table IV. (The symbol x
has different meanings in the two tables.)

5. CONCLUSIONS AND DISCUSSION

The main conclusions to be drawn from these computer simulations and
our analysis of them are these:

[. Over the time range considered (which started fairly late in the
process, when there had already been about 1000 attempted interchanges per
site) the distribution of small clusters is given approximately by the empirical
formula (2), with a value of w that changes slowly with time.

2. The time dependence of w can be approximately represented by the
formula

w R wil + 2.4/(I%)'3] (45)
where w, = 0.0105 is the value of w describing the saturated vapor, and [*
is given by

I* ~ 0.038t (46)
with ¢ the time, measured by the number of attempted interchanges per site.
The fact that /* is proportional to ¢ accords with the predictions of Lifshitz
and Slyozov.®®

3. The distribution of large clusters is described by a formula of the type
implied by the theory of Lifshitz and Slyozov'®

ol, 1) = gllﬁ{lnt + qS(é)} 47

where

49 = [ s g 48
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and the function ¢ can be determined by considering the total number of
particles in large clusters.

4. It is a consequence of (47) that the average size of the large clusters,
which is roughly /¥, grows in proportion to ¢. Various investigators, including
some of the present authors,*® 8 have reported average cluster sizes growing
more slowly than this (e.g., as *®°). The reason for the discrepancy may be
that the times considered were too early, or the concentrations too high, for
the LS theory to apply; or that the averages included some small clusters as
well as the large ones.

5. The function ¢ is fitted quite well by the formula

$(x) = Coe™* — Cye™ 413 — Cye=5%13 (49)

with C,, C,, C, determined by considering how w, and hence the number of
particles in large clusters, changes with time. In the very late stages of the
process, to which the Lifshitz-Slyozov theory applies, only the term Cye™* is
necessary, but for the times considered in our simulations the other terms
are necessary, too.

6. For the normalization integral associated with the formula (49)
to converge, it is necessary that B*/4? > 6.74, as noted by Lifshitz and
Slyozov.*® The observed value of B3/ 4% was 4.0. This seems to indicate that
our results cannot be extrapolated to arbitrarily large values of In 7 + ¢({/2).
Possibly the value of B eventually gets larger- than the value 0.453 which we
found. This would imply, by (29), a smaller value of K = (4/B)3, that is, a
smaller rate of increase of /¥, than during the time interval covered by our
simulations. To be consistent with the condition B®*/4% > 6.75, this “ulti-
mate’” value of K would have to be not greater than A4/6.75 = 0.0226,
instead of the value 0.038 implied by our data.

APPENDIX A. CLUSTER GROWTH BY DIFFUSION

In the body of this paper we used a formula (11) relating the rate at
which particles arrive at the surface of an /-particle cluster to the diffusion
coefficient for monomers. In the derivation of that equation@%2? it is
assumed that almost all the small clusters are monomers, For the densities
we are considering here, a sizeable fraction of the small clusters are not
monomers, and so an improvement on formula (11) and its consequence,
Eq. (19), is desirable. To provide this we consider the process of diffusion
near a cluster of size / without making any specific assumptions about the
other clusters. Consider two neighboring lattice sites, say site 1 and site 2,
in a nonuniform system for which the probability of site i being occupied (by

8 See Ref. 8 for other references.
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an A particle, in alloy language) is p;. The probability of the event that site 1
is occupied and site 2 empty (occupied by a B particle, in alloy language) is
{1 — pa) + O(p®), and the conditional probability, given this event, that the
particle (A particle) moves from site 1 to site 2 is (in an approximation which
becomes exact as p — 0) £F(0) per unit time, where F is defined in Eq. (1) and
was put equal to 1/2 in our simulation. The probability that the (A) particle
will jump from site 1 to site 2 is therefore approximately 1F(0)p,(1 — pg) per
unit time. Similarly the probability of a jump from site 2 to site 1 is
LF(0)po(1 — py). Subtracting, we find that the mean rate of flow from site 1
to site 2 is

EF(O)[p:(1 — pa) — po(l — p1)] = P5(py — p2)

It follows that the density of (A) particles satisfies a lattice version of the
diffusion equation with diffusion constant D = 1/12.

The quantity v, defined in Eq. (15) is the average net number of particles
per second arriving at the surface of an /-particle cluster, which we take to be
a sphere of radius R,. On the assumption that diffusion controls the rate of
arrival and absorption of these particles, the density p(r) at distance r from
the center of the cluster is related to the radial diffusion current I(r) by

I(r) = — D dp(r)/dr (AD)

where D is the diffusion constant. Assuming a steady state (v, = const) the
conservation of particles requires

4mr2I(r) = const = p, (A2)
Using this in (A1), with the boundary condition p(r) — p as r — oo, we find
p(r) = p — (/4= Dr)
The boundary condition at » = R, then gives
v,f4rDR, = p — p(w) = (W — w) dp/dw + -

where we are assuming that it is possible to associate a density p(w) with each
value of w. Substituting from (9) for w,, (13) for D, and from the assumed
relation [ — 2 = (4=/3)R?, as in the text, for R;, we obtain Eq. (20), but
with 4 now given by

B 1 /3\us dp
A= 4771—2 (21;) 2.415%

The main difference between this formula and the formula (19) for 4 given
in the text is the factor dp/dw, which allows for the contribution of clusters
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containing more than one particle to the supply of particles to the cluster of
size /. The numerical value of dp/dw depends on what function we assume for
p(w). A reasonable choice, based on the assumption that (2) is valid for all
[ < I*(w), would be

p(w) = (1 — p)w + (1 — p)* > IO
2

but for simplicity we truncated the series at / = 20 instead of / = /*. Our
procedure gives a value of dp/dw which decreases from about 3 to 1.5 as the
run considered in this paper proceeds. This extra factor in the theoretical
formula for A brings up the value of A from 0.013 {as obtained in Eq. (19)]
to a value in the range 0.02-0.04. Unfortunately, the observed value of 4
given in Eq. (37) is still considerably larger.

APPENDIX B. SOME OF THE DATA

Table VIII shows a sample of the data used in the investigation. In each
row of the table the left-hand entry is a time and the other numbers are the
sizes of the 25 largest clusters at that time. The numbers in the 20 rows
between the two horizontal rules are among those used in calculating the
averaged values of Ng(/, t) for ¢+ = 2121, which were then combined with
averaged values of Ng(/, t) for the other times in Table III to give the entries
in Table IV.

Table VIII illustrates how the size of the largest cluster can be affected by
coagulation of other large clusters. The largest cluster at time 1980.6 has size
285, but by time 2013.5 this cluster (now of size 278) is only second largest;
the new largest cluster, of size 441, appears to have been formed by the
coagulation of two of the five clusters whose sizes at time 1980.6 were
between 214 and 228. A similar event can be seen between times 1786.7 and
1802.6, but this one is quickly undone again.

Table IX shows the values of Ng(/, #) used in compiling Table IV. The
numbers at the heads of the columns are time ¢. Of the remaining numbers,
those on the right-hand side of each column are equally spaced values of [;
those on the left are the corresponding values of Ng(/, #), the number of
clusters larger than /, averaged over 20 times whose average is .
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